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Anomalous equilibrium emittance due to chromaticity in electron storage rings
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An anomalous equilibrium emittance due to chromaticity of the focusing elements is predicted for
electron storage rings. A simple model which describes the transverse beam distribution as a function of
the longitudinal phase space is given to evaluate the anomalous emittance. The anomalous emittance
can be a critical difficulty in achieving a very flat beam for high-luminosity electron-positron colliders.

PACS number(s): 41.60.Ap, 29.20.Dh, 41.85.Ew

I. INTRODUCTION

Synchrotron radiation characterizes the behavior of
the beam in an electron-storage ring. Its basic effects are
(i) damping of longitudinal and transverse oscillation
modes, (ii) stochastic excitation of the oscillations due to
the quantized nature of the radiation, and (iii) achieving
equilibrium distribution determined as the balance of the
processes (i) and (i1) [1]. In usual situations the momen-
tum of the radiated photon is much smaller than the
beam momentum, and also the number of photons per
damping time is very high. Therefore, the equilibrium
distribution is approximated by a Gaussian in the six-
dimensional phase space, and thus specified by the mean
value and the variance of the phase-space variables. To
describe the motion of a particle in a storage ring, it is
convenient to choose the position s along the reference
orbit around the ring as the independent variable [2]. In
this case the phase space is described by six variables
x=(x,px,y,py,z,8)T, where x and y are the horizontal
and vertical displacements from the reference orbit, p,
and p, are their canonical conjugate momenta, & is the
deviation of the momentum from the reference, and z is
its conjugate, respectively. As a convention we normalize
Px» Py, and 8 in units of the reference momentum p,,.

The equilibrium orbit and the variance are determined
by the steady-state solution [3,4],

x,=T[x,],
V=MVMT+B ,

where x, is the equilibrium orbit at s, T is the
one-turn transformation of the ring, and V=(uu’)
=((x—x,)(x—x,)T) is the variance matrix around x,.
The one-turn transfer matrix M is evaluated around the
equilibrium orbit starting at s. Both 7 and M include the
damping by the synchrotron radiation. The matrix B
represents the excitation of the oscillation by the radia-
tion. The specific forms of M and B are determined by
the electromagnetic structure of the storage ring. The
solution of Eq. (1) is expressed in terms of magnetic
focusing strengths and beam-optical functions in simple
cases as shown in Refs. [1] and [4]. Equation (1) involves
linear resonances including synchrotron-betatron cou-
pling caused by, for example, dispersion at accelerating
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cavities [5]. Let us define the equilibrium emittances of
the beam as the eigenvalues of the equilibrium matrix V.
Although the emittances defined in such a manner de-
pend on the location s in the ring, their differences at
different s are at most in the order of (revolution
period)/(damping period), which is typically 1/1000.
Thus they effectively behave as invariants.

The equilibrium solution ¥ to Eq. (1) is only consistent
when T is nearly linear around x,, and the matrix B is al-
most constant within the resulting equilibrium beam size.
One of the examples violating these conditions has been
known [6] as so-called nonlinear wigglers, which were
proposed to achieve a non-Gaussian distribution by
changing B and M drastically. Another known example
is applying an rf accelerating voltage with higher har-
monics which distort Gaussian distribution. In this pa-
per we will point out a general phenomenon in which the
real variance significantly differs from that estimated us-
ing Eq. (1). In most storage rings the transverse transfor-
mation is almost linear in the range of a few standard de-
viations of the equilibrium beam size, except the beam-
beam effect of colliding beams which is beyond the scope
of this paper. Although the longitudinal (synchrotron)
motion itself is also nearly linear, the transverse transfor-
mation can be affected by the synchrotron motion due to
chromatic effects of the focusing structure of the ring.
Usually the natural chromaticity of the transverse focus-
ing force is so corrected as to have enough acceptance for
the injected beam and to guarantee a long lifetime for the
stored beam. The residual terms, however, may disturb
the equilibrium beam size. We call the emittance pro-
duced by the chromatic effects “anomalous emittance,”
whereas that determined by the solution V of Eq. (1) is re-
ferred to as “linear emittance.” The anomalous emittance
is particularly serious for high luminosity colliders, e.g.,
B-meson factories, which squeeze the beam at the in-
teraction point (IP) to increase the luminosity [7]. Some
of those machines also require a very flat beam whose
vertical-to-horizontal emittance ratio is as small as 1%.
Therefore the chromatic effects are critical for such flat-
beam machines, because they easily degrade the vertical
emittance. Moreover, a colliding machine usually has a
longitudinal magnetic field at the IP for the particle
detector. This longitudinal field also leads to the anoma-
lous emittance. Even if its x-y coupling effects are com-
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TABLE 1. Related parameters of the B-meson factory at
KEK.

Beam energy E 3.5 GeV

Transverse tunes ue/n, 411174119 27

Linear emittances €x0/€y0 18.0/0.014 nm
Relative momentum spread gs 7.4X1074

Circumference cT, 3010 m
Synchrotron damping period 7/Ty 4150 turns

B functions at the IP B /By 1/0.01 m
Solenoid field at the IP B, 1X2.2 Tm

pensated by other magnets only at the designed momen-
tum, the remaining chromatic change of the coupling
term is still big enough to blow up the vertical emittance,
as shown below. This paper proposes a model to evaluate
the anomalous emittance quantitatively. We also show
several results by applying the model to a design of a ring
for the B-meson factory at KEK as an example [8], whose
parameters are listed in Table I.

II. EQUILIBRIUM DISTRIBUTION AS A FUNCTION
OF LONGITUDINAL VARIABLES

First we assume that the one-turn transformation
around the equilibrium orbit x, is linear in the transverse
direction, and that the longitudinal oscillation itself is
also linear and independent of the transverse motion.
Therefore, the longitudinal oscillation without radiation
is a simple sinusoidal motion in the phase space around
the equilibrium values 8, and z,,

8=\/Ezcosnuz+8e ,

(2)
z=v'2J,sinnp,+z, ,

where J, is the longitudinal action, u, is the phase ad-
vance of the synchrotron motion per one revolution, and
¢,=npu, is the longitudinal angle at the n-th turn. The
number pu, /27 is often called a synchrotron tune. Note
that Eq. (2) assumes a normalization of & and z, so that
the motion becomes circular in the phase space. In the
present example, the final results turn out to be consistent
with the assumption that the longitudinal distribution is
not affected by the chromatic effects. Due to the
chromatic effects of the transverse transformation, the
equilibrium distribution inevitably depends on the longi-
tudinal coordinates (J,,¢,). Although this equilibrium
solution also depends on s, all variables are evaluated at a
particular location s for the time being. Thus all vari-
ables are defined at s hereafter. We propose a natural
generalization of the equilibrium equation (1), so that it
describes the transverse distribution dependent on (J,,¢,)
as well. Since the transverse motion is linear, the equilib-
rium distribution is still Gaussian in the transverse direc-
tion and can be specified by the variances which now de-
pend on (J,,¢,). In what follows, we restrict our atten-
tion only on the transverse distribution and use trans-
verse four-dimensional vectors and 4X4 matrices. We
impose an additional condition that the original matrix
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M is separated into the transverse part U and longitudi-
nal part. This condition is usually satisfied by choosing s
at a place where the linear momentum dispersion of the
transverse orbit is suppressed.

We define the mean value h of the orbit deviation from
the transverse part of x, and the transverse variance ma-
trix W around h as

W, 6,)= [ (x,—x,)f(x,,],,6,)dx, /p(J,) ,

(3)
W, 6.)= [ (x, =, )x[—x)

X f(x,,J;,¢.)dx,/pUJ;) ,

where f is the six-dimensional distribution function at s,
and the integration is performed over the transverse
phase space. The subscript ¢ indicates the transverse part.
The longitudinal distribution p(J,) is Gaussian, i.e.,

[ £(x,d,,8,)dx,=p(J,)=exp(—J, /0})/0}, (@4

where o is the momentum spread. Since we have as-
sumed that the synchrotron motion is sinusoidal, which
advances the phase ¢, by i, in one revolution of the ring
as Eq. (2), the equilibrium distribution satisfies these
equations:

h(J,,¢,+p,)=UhWJ,,4,)+d+Ah,

WJ,,é,+u,)=UW,,6,)UT+dh"UT+ Uhd”
+dd"+D+AW ,

(5)

The right-hand side (rhs) of Eq. (5) expresses the transfer
of the beam distribution in one revolution associated with
the transverse one-turn map. All vectors and matrices on
the rhs of Eq. (5) are evaluated at (J,,¢,). The terms Ah
and AW represent the damping and diffusion in the longi-
tudinal phase space described in the next paragraph. The
matrix U(J,,¢,) now involves all chromaticities in the
transverse transfer matrix including x-y coupling terms,
and d(J,,¢,) is the source of the higher-order momentum
dispersion of the transverse orbit. According to our as-
sumption on the transverse linearity, the matrix U does
not depend on the amplitude of the mean value h. The
excitation matrix D(J,,¢,) also reflects the chromatic
effects of the ring.

In addition to the transverse transfer described above,
we have to take into account that both the damping and
the diffusion in the longitudinal phase space also transfer
the transverse beam distribution. This longitudinal
transfer is described by the Fokker-Planck equation [9],

of of
o 8f +oi
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2
;

9
long Gl
where 7 is the longitudinal damping time. According to
the definitions Eq. (3), the quantities p(J,)h and p(J, )W
should satisfy the same equation as Eq. (6). Since the
time scale of the synchrotron motion is longer than the
revolution period T, in most rings, we can estimate the
effect simply by multiplying the rhs of (6) by T,. This
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treatment is equivalent to assuming the diffusion and the
damping in the longitudinal phase space to be an impulse
at the location s.

A practical way to solve Eq. (5) is to use a Fourier ex-
pansion,

g(‘lz’¢z)=2§k(‘lz )exp(1k¢z) >
k

for all variables in Eq. (5), where the overbars stand for
Fourier coefficients. Then Eq. (5) reduces to

— 2T, (8k—2 18k +2) o3
= 3 A _k2 —_
Agi(J;) (J,) A |8k 2 4J, 8 (J;)
k—1_, k+1_,
— T3 Bkt TR k) ] ,
where g is either h or W, and
AJE)=(03—T,)EU,)+ad,E'J,) . (10)

Then is is feasible to solve Eq. (8) numerically, once the
functions U(J,,¢,), d(J,,¢,), and D(J,,d,) are given.

In practice we solved Eq. (8) in the case of our example
ring as follows. The functions U(J,,¢,), d(J,,¢,), and
D(J,,$,) actually depend only on the momentum 8 with
good accuracy. Thus we obtained them by numerical in-
tegrations through the ring at 35 points §, in the range
|8 <405, and calculated the Fourier components U, d,
and D from them. We took 36 mesh points in J, direc-
tion, in the range 0<2J, <(40)>. The derivatives by J,
in Eq. (10) are replaced by finite differences. The length
of the Fourier series was chosen to be 13, in the range
—6=<k <6 [10]. We have also included the change of the
synchrotron frequency depending on the amplitude J,
due to the nonlinearity of the rf wave form. After solving
the equilibrium distribution as a function of (J,,4,), we
obtained the variance of the entire transverse distribution
around the equilibrium orbit x, by averaging over the
longitudinal phase space as

(wy= [ WoJ,)pJ,)dJ, , (11)
using the longitudinal distribution (4). We estimated the
projected emittances of { W) by

5x=\/< WY W= (W),
Ey-_—\/< W>33( W)M‘( W>§4 .

(12)

Note that this estimation does not represent the entire
transverse distribution since it is no longer Gaussian,
specified only by (11). We have assumed that the original
linear distribution V, is diagonal in x and y directions
with an appropriate coordinate transformation.
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b, (J,)explikp, )= U, _,(J,)h,(J,)
!

+d,(J,)+Ah, (J,),

_ _ (8)
W, (J, )explikp,)=3 (UQUT), _ (J,)W,(J,)
!

+[dhTUT+ Uhd T+ddT+ D1, (J,)
+AW,(J,) .

These are linear equations for h, (J;) and W, (J,), includ-
ing the additional terms Ah, and AW, expressed as

k—2
+__
4

k
1_.._
2,

k+2

4 8k +2J;)

III. ANOMALOUS EMITTANCE
AT RESONANCE LINES

Figure 1 shows the result of the estimation as functions
of the synchrotron tune u,/27. We see several resonant
peaks of the emittances corresponding to resonance lines
pxtu,Tmp,=2Nmw, 2u,*mp,=2Nm, and 2u,Tmuy,
=2Nm, where pu, and u, are the transverse phase ad-
vances per one revolution, and m and N are integers.
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FIG. 1. The horizontal and vertical emittances as a function
of the synchrotron tune. The prediction of our model (dashed
and dotted curves) represents the anomalous deviation from the
“linear emittances” €,,=18.0 nm and €,,=0.014 nm. These
curves exhibit several resonance lines denoted as (a)
=3, =2Nm, (b) p, —p, +2u, =2Nm, () u, —2u,=2Nm, (d)
2u, —3u,=2Nm, (e) py —p, +p, =2Nm, () u, —3u, =2Nm, and
(8) u, —2u,=2Nm, where u, /2m=41.11, p, /2m=41.19, and N
is an integer. The open and filled circles with error bars are the
results of the particle-tracking simulation. Panel (B) magnifies
the vertical scale of (A).
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These resonances are possible because we have taken the
nonlinearity into account only for the longitudinal vari-
ables, and have assumed transverse motion to be linear.
There are mainly three kinds of sources to induce these
resonances of emittances. The first one is the chromatici-
ty of the x-y coupling term of the transfer matrix U,
which excites p,+tpu,tmu, =2Nmw, ie., coupling reso-
nances. Figure 1 shows two coupling resonances (labeled
b and e). The second source is the higher-order momen-
tum dispersion in each plane which leads to
pxytmp,=2Nm and p,tmp,=2N lines (denoted by a,
¢, f, and g). The third one is the chromaticity of the
linear transformation in each plane corresponding to
2u,tmp,=2Nm and 2u,*mp,=2Nm (d in Fig. 1). A
resonance line of the second type may be accompanied by
the third one simultaneously. While the coupling reso-
nance generates the off-diagonal elements in the variance
matrix W(J,,¢,) and increases its diagonal components,
the higher-order dispersion blows up the mean value
h(J,,¢,). We performed a particle-tracking simulation
with a computer code SAD [7], and confirmed the result
of the estimation. The tracking is based on a symplectic
transformation in six-dimensional phase space for each
element of the ring, and the synchrotron radiation in di-
pole and quadrupole magnets is taken into account.
Rather than simulating the emission of each photon with
the exact spectrum, we approximated the spectrum using
uniform random numbers, which have the same expecta-
tion values of the energy loss and the energy fluctuation
as the real photon, to save the computing time. This pro-
cedure is reasonable because the critical energy of each
photon divided by the beam energy is typically 1.7X 1076
and the number of photons per one revolution is 450 in
this ring. We tracked 20 particles during 50000 turns
starting at zero amplitude, while the radiation damping
time is 4000 and 8000 turns for the longitudinal and
transverse modes, respectively. We averaged the ampli-
tudes of the particles after the 10 000th turn. The results
of the tracking are depicted by circles in Fig. 1. The er-
ror bar corresponds to 1o of the statistical error. The
simulation confirms the estimation based on Egs. (5)-(12)
very well.

Beside the numerical results above, it is worth deriving
an analytic solution for Eq. (8). In this paper we only
show the result for the simplest case, which is the main
resonance u, —p, +u, =2Nm (denoted by e in Fig. 1).
To derive an analytic solution, we have to make several
simplifications. First we assume that the transfer matrix
U has its chromatic terms only in x-y coupling. The 4 X4
transfer matrix U can be decomposed as [11]

al —JRT®)VJ||x 0| aI JRT(8)M
U=|-r) 0 Y|[|R® aI |’
(13)
where
ry rn
R=| r4] (14)

is the matrix to describe the x-y coupling, X and Y are

2 X2 transfer matrices in each plane, and

10
01

0 1
—10

I= . (15)

’

The scalar parameter a satisfies a2+ |R|=1. Although
the transfer matrix U in Eq. (5) includes the damping by
radiation and the decomposition (13) is only valid for a
stable symplectic matrix, we use the decomposition (13)
to express the x-y coupling. In this case the damping is
involved in each mode, i.e., matrices X and Y. This ap-
proximation is justified unless the damping rate is very
high. We assume that only the matrix R above depends
on the momentum deviation 8. Since the coupling matrix
R is usually corrected for the design momentum, i.e.,
R (0)=0, the main contribution comes from its first-
order term OR /36. Thus we take only the linear
chromatic term of R as

’ ’ ’ ’
ry rn ry rp

R(®)= 5= V2] cosd, . (16)

’ ’

r3 I4

ry ry
The chromaticity of matrices X and Y should be small
due to the regular chromaticity correction.

On evaluating Eq. (8), we also neglect other chromatic
terms in d, h, and D. As we have limited the chromatic
terms to Eq. (16), the leading terms of the chromatic
effect appear in W, and W ,,. Therefore, we solve Eq. (8)
only for W, and W, up to the order of r2. After a
lengthy calculation using Egs. (13) and (16), and ignoring
the Fokker-Planck terms, Eq. (8) gives a solution near a
resonance pu, —p, +u, =2Nm,

g, e, =gy,
(17
w

E)’= 2 2Ex0 4
2w+ (To /1 +To /7)) +(py —py,+u,—2N7)

where €, is the linear emittance in the x plane, and the
linear emittance in the y plane is assumed to be zero be-
cause of the flat-beam design. The parameters 7, and 7,
are the radiation damping times in both planes. In Eq.
(17), the strength and the width of the anomalous emit-

tance are determined by the parameter
w={[?)+?, —?y(a, —a,)]?
+[—?ia, +?5(1+a,a,)—P; +7,a, )}

,r —
X |1+ agsinz'ux £y , (18)
Ty 2

where ?/ are defined as

P | |riVB./B, ry/V/ BB,
v 1E L e e (19
?3 ?4 rs BxBy ’4\/3}, /Bx )

with Twiss parameters a,, S, a,, and B, at the reference
point.

The model ring has w=1.3X 107>, which roughly ex-
plains the numerical result of the width of the resonance
e in Fig. 1. In the case of an existing ring, the value of w
has been small. For example, TRISTAN [12] has
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FIG. 2. Distribution of the vertical amplitude at (A) x-y cou-
pling resonance at e, and (B) resonance of h, at g. The vertical
scale is in arbitrary units. The distribution (B) shows a
tail in the large amplitudes, even beyond the range of the fig-
ure. The dashed line is a fitted Gaussian distribution
Sy =<exp(—J, /¢, q).

w=5.0X10"7 in the collision mode at 29 GeV. The
magnitude of the parameter w depends on the relative
momentum spread, the relative strength of the solenoid
field at the IP, and the local chromaticity around it.
Compared to the TRISTAN, the solenoid field of the model
ring is factor 3 relatively stronger but its effect on w is
cancelled by its smaller momentum spread (1 in o). The
big difference of w comes from the chromaticity localized
around the IP. A future collider like the model ring re-
quires an extremely high local chromaticity around the
IP to achieve high luminosity by strong focusing. This is
the reason why the anomalous emittance has not been re-
ported in existing machines, but can be critical for future
machines.

Next we studied how the equilibrium distribution devi-
ates from the Gaussian. We checked the distribution of
the vertical amplitude by the particle tracking. Figure 2
shows the result at two resonance lines e and g in Fig. 1.
While the transverse equilibrium distribution (A4) at the
coupling resonance e is close to the Gaussian, the distri-
bution (B) at the resonance g has a long tail in the large
amplitude region. Thus the emittance of the core, which
corresponds to the slope of the fitted line in each panel of
Fig. 2, is the same as the rms value at e, but 1 at g. This

g, (nm)

02 0.04 "0.06
u,/2m

FIG. 3. Machine errors enhance the strengths of resonances
of the anomalous emittance, comparing to those without errors
(Fig. 1). Each trace corresponds to a different random-number
seed.

difference is ascribed to the fact that at the resonance g
the amplitude of the vector h has a sharp peak in the lon-
gitudinal phase space. On the contrary, the blow up at
the resonance e is broad and limited at half the horizontal
linear emittance.

It is important to evaluate the effects of machine errors
on the anomalous emittance in constructing an actual
machine. We estimated the effects using the model de-
scribed above by putting together several kinds of ran-
dom machine errors. We added 100 pym transverse
offsets, 100 urad rotation in the x-y plane, and 0.1% rela-
tive strength errors for all magnets of the example ring.
We also corrected the equilibrium orbit so as to pass the
center of each focusing lens within an accuracy of 100
pm. The correction scheme is a conventional one with
dipole correctors. With these machine errors and the
correction, the linear vertical emittance can be reduced
to 1% of the horizontal one. The magnitudes of these
machine errors are realistic with present technologies.
Figure 3 shows the anomalous emittance for four
different random-number seeds. The strengths of reso-
nances are strongly enhanced. Therefore, the anomalous
emittance we found poses a serious difficulty in achieving
a very flat beam, which can be avoided only by a careful
choice of the tunes (u,,u,,u,) and some sophisticated
correction method.

IV. CONCLUSION

The model described by Egs. (5)-(12) predicts with
good accuracy the anomalous equilibrium emittance due
to the chromaticity of an electron storage ring. Although
the anomalous emittance degrades the performance of a
very flat-beam machine with high chromaticity, it can be
in principle eliminated by adding more chromatic ele-
ments, e.g., skew sextupoles at horizontally dispersive lo-
cations. Further study should be made in the case where
the spread of the synchrotron frequency in a bunch or
among bunches becomes big by intensity-dependent
effects [13].
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